In my last post we evaluated the following definite integral This is the formula we got: and this is the integral we want to evaluate: which is equivalent to because… Read more Gaussian integral using Feynman’s technique →

When none of the techniques you’ve learnt so far (u-substitution 1, 2,3,4 and integration by parts seem to work, you might consider trigonometric substitution. Basically, if you have a function that reminds you of a trigonometric identity, you let that function be equal to the result of the identity, for example cos²x from 1-sin²x, and then differentiate. To make things more clear I’m going to use this example: U substitution and integration by parts are not going to be very helpful. What we are gonna do instead is let x=sin(theta)… Read more Integration techniques | Trigonometric substitution →

U-substitution is the most common technique used in integration. It can happen, however, that it doesn’t work out, no matter what you try to substitute. You may think of using another technique, like integration by parts, but it’s not always necessary. You realise u-sub is not working when you still see one or more x’s. For example: As you can see, we have an x that we don’t want. At this point you may think about integration by parts, and yes, that’s actually the way to go. The result is… Read more Integration techniques | U substitution – part 2 →

U-substitution is a very useful technique for integration. You can apply it in every case, but it doesn’t always make things easier. But here comes this new technique in help!… Read more Integration techniques | Integration by parts →