## Integral of cot(x)

In this post you’ll learn how to integrate the trigonometric function cot(x). But first: What is cot(x)? Maybe you already know it, but this is going to be really useful.… Read more Integral of cot(x) →

In this post you’ll learn how to integrate the trigonometric function cot(x). But first: What is cot(x)? Maybe you already know it, but this is going to be really useful.… Read more Integral of cot(x) →

Maybe you know that the answer is ln(sec(x)), but do you know why? Here you’ll find the procedure with explanation! First of all, let’s write the integral: We know that… Read more Integral of tan(x) →

The integral of sin(x) is -cos(x), but why? Here you’ll find the demonstration using Euler’s identity!

The integral of cos(x) is sin(x), but why? Here you’ll find the demonstration using Euler’s identity!

Indefinite integrals are used to find the formula for the area under a curve of function f(x), whereas definite integrals allow you to calculate the value of the area. It’s like the area of a rectangle, b*h: this is the formula, and in order to find the value you have to plug in the values of b and h. The same is for definite integrals. A definite integral is generally written like this: where a and b are called respectively lower and upper bounds. Also, As you can see, if… Read more How to solve definite integrals →

When none of the techniques you’ve learnt so far (u-substitution 1, 2,3,4 and integration by parts seem to work, you might consider trigonometric substitution. Basically, if you have a function that reminds you of a trigonometric identity, you let that function be equal to the result of the identity, for example cos²x from 1-sin²x, and then differentiate. To make things more clear I’m going to use this example: U substitution and integration by parts are not going to be very helpful. What we are gonna do instead is let x=sin(theta)… Read more Integration techniques | Trigonometric substitution →

U-substitution is the most common technique used in integration. It can happen, however, that it doesn’t work out, no matter what you try to substitute. You may think of using another technique, like integration by parts, but it’s not always necessary. You realise u-sub is not working when you still see one or more x’s. For example: As you can see, we have an x that we don’t want. At this point you may think about integration by parts, and yes, that’s actually the way to go. The result is… Read more Integration techniques | U substitution – part 2 →

Here you will see how to solve these integrals https://addjustabitofpi.com/integration-by-parts-exercises/ and check if you got them right! Wait… we have the integral of sin(x)cos(x) again! So this means that and Easy, right? Let’s solve this integral by performing another integration by parts. so we have We can do the same thing we did for the integral of sin(x)cos(x). Therefore, We now know that this is equal to which is equal to The answer is Same thing here; And that’s it! Stay tuned for more integrals. You might find these links… Read more Integration by parts | Solution with procedure →

{{#pages}}
{{/pages}}

%%footer%%